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Abstract
An improved method for deformable shape-based image
segmentation is described. Image regions are merged to-
gether and/or split apart, based on their agreement with
an a priori distribution on the global deformation param-
eters for a shape template. Perceptually-motivated criteria
are used to determine where/how to split regions, based on
the local shape properties of the region group’s bounding
contour. A globally consistent interpretation is determined
in part by the minimum description length principle. Ex-
periments show that model-guided split and merge yields a
significant improvement in segmention over a method that
uses merging alone.

1 Introduction
Retrieval by shape is a key topic in content-based image
retrieval research. Unfortunately, retrieval by shape re-
quires object detection and segmentation. In [16, 23] we
described a system for automatic shape-based indexing of
image databases that employs a shape model to guide re-
gion grouping. A limitation of the system was that it em-
ployed model-based region grouping only, without region
splitting. However, it is well-known that split/merge in re-
gion segmentation [11] tends to yield improved accuracy
over methods that employ only splitting or only merging.

In this paper, a method is proposed for incorporating a
model splitting step in the previous model-guided region
grouping algorithm [16, 23]. Candidate region splits are
determined using criteria that are motivated by human psy-
chophysics. In addition, cues obtained from a statistical
shape model are used to prioritize the selection of candi-
date region splits. The resulting algorithm combines bot-
tom up processing with top-down (model-guided) process-
ing. As will be seen in the experiments, the split and merge
approach yields a significant improvement over the previ-
ous algorithm in detection and segmentation of deformable
shapes. The method can detect multiple shapes even in the
presence of poor initial segmentation, shadows, or when
shapes in the image touch.
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2 Related work

Some traditional methods for region splitting include sep-
aration of touching features by erosion/dilation, water-
shed segmentation, etc. [22]. However, morphological
operation-based methods only deal with regular shapes,
or where there are only bottleneck connections between
touching objects.

A natural question is: How does the human vision sys-
tem parse a region into parts?Perhaps such strategies can
be adapted to solve our problem. Some theorists postulate
that there is a set of basic shape primitives [3, 4, 18, 19]
that are useful in finding parts and describing them. Others
postulate that there are rules, based on geometric properties
alone, by which humans perceive boundaries between parts
for a given shape [10, 24]. Still others propose theories
based on the relationship between the nonlinear diffusion
equation and shape perception [14, 28]. We will make use
of both shape constraints (deformable template and statis-
tical priors) and geometric properties of the region contour
(curvature minima) in guiding splits.

In related work, Hoffman and Richards [10, 20] pro-
vided the minima rulefor shape parsing: cut each silhou-
ette into parts at concave cusps and negative minima of
curvature. For a 2D silhouette, the minima rule provides
boundary points on the silhouette outline, and part cuts
must pass through them. However, the minima rule does
not define the part cuts themselves – it only constrains them
to pass through the boundary points it provides.

There are perceptual constraints beyond the minima rule
that affect one’s parsing preference [24]. Part salience[9]
and the short-cut rule[25] were proposed to embody those
constraints. Hoffman and Singh[9] isolated three factors in
part salience: relative area, amount of protrusion, and nor-
malized curvature across the part boundary. However, they
do not integrate these into a shape partitioning scheme.
The short-cut rule [25] is simple: if boundary points can be
joined in more than one way to parse a silhouette, choose
the parsing that uses the shortest cuts. A cut is defined to
be (1) a line that (2) crosses an axis of local symmetry, (3)
joins two points on the silhouette, such that (4) at least one
of the two points has negative curvature.

The short-cut rule has some limitations. First, the length
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of the cut only involves minimal shape information. Sec-
ond, restricting the cut to cross a symmetry axis is prob-
lematic, because robust computation of symmetry axes is
difficult in general. To circumvent these problems, [21]
proposed segmenting regions into roughly convex parts via
an optimization procedure at multiple scales. Since the
method uses exhaustive search to find the optimal cuts, the
algorithm is slow despite the use of a multi-scale approach.
In addition, the method requires that the number of cuts for
the shape partitioning is known.

Latecki, et al., [15] used a contour evolution method to
identify convex parts at different stages. The assumption is
that significant visual parts will become convex at higher
stages of the evolution. In related work, Belyaev, et al.[1]
developed a polygonal curve evolution method that can be
used for multi-scale shape analysis. A major drawback of
contour evolution approaches is that it is unclear how to
distinguish cuts between objects from cuts between parts
inside the same object.

Two-dimensional part decomposition methods to date
have had several drawbacks. There is no cut rule that is
good for all cases. However, our problem is different in
that we can make use of a deformable template model in
determining cuts employed in region splitting. Use of the
shape model, which embodies knowledge about a partic-
ular class of objects and the prior distribution on nonrigid
deformation, will improve cut selection considerably.

3 Review of Basic Approach
In [16, 23] we proposed a method that uses a deformable
model to guide grouping of image regions. Our basic ap-
proach extends methods employed in active contours [13]
and deformable templates [7, 8, 12, 17, 27] to the problem
of automatic object detection and segmentation via region
grouping. We will now briefly review our basic approach.
For more detailed discussion of our approach, including
parameter settings, please see [23].

An overview of the approach is shown in Fig. 1. In the
pre-processing stage, the input image is over-segmented
via standard region merging algorithms [2, 6]. The out-
put of this module includes a standard region adjacency
graph. An edge map is also computed; notable edges and
their strengths are detected via standard image processing
methods. The resulting edge map will be used to constrain
consideration of possible grouping hypotheses later in re-
gion merging.

The system then tests various combinations of candidate
region groupings to obtain an optimal labeling of the im-
age. The shape model is deformed to match each grouping
hypothesis gi in such a way as to minimize a cost function:

E(gi) = �Ecolor + (1� �)((1� �)Earea + �Edeform);
(1)

where � and � are scalar constants with values in the range
[0; 1] that control the relative importance of the three terms:

Model-based region
grouping

Pre-processing

Figure 1: Diagram of the deformable template-based region
merging system. An input image (image of bananas) under-
goes pre-processing, which results in an over-segmentation and
an edge map. These are inputs to the model-based region group-
ing stage (using a deformable banana template). The final output
includes region groupings (shown in top output image) for de-
tected objects (four bananas), and recovered models for the ob-
jects (shown in bottom output image).

Ecolor is a region color compatibility term for the region
grouping, Earea is a region/model area overlap term, and
Edeform is a deformation energy for the shape model. A
model fitting procedure is used to compute the cost in Eq. 1
via the downhill simplex method.

A deformation term enforces a priori constraints on the
amounts and types of deformations allowed for the tem-
plate; i.e.:

Edeform / � logP (aj
); (2)

where P (aj
) gives the prior distribution on global defor-
mation parameters, a, for a particular shape class 
. In our
experience, the use of a Gaussian model for the prior distri-
bution on global deformation leads to reliable shape-based
image segmentation. An estimate of the prior distribution
is computed in a supervised fashion, for a given set of train-
ing examples for that shape class. In our implementation,
linear and quadratic polynomials are used to model defor-
mation due to stretching, shearing, bending, and tapering.

Further, in order to test the quality of a possible parti-
tioning, a global cost function for partitioning the whole
image is defined:

E = (1� )

nX

i=1

riE(gi) + n; (3)

where  is a constant factor, n is the number of the group-
ings in the current image partitioning, r i is the ratio of ith

group area to the total area of connected regions, andE(g i)
is the cost function for the group gi (Eq. 1). The highest
confidence first (HCF) algorithm [5] is used to find an ap-
proximately optimal value for Eq. 3. The approximately
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Figure 2: Error in segmentation The input image is a blood cell
micrograph (a). The model-guided segmentation is shown in (b),
with cell regions (grey areas) and fitting models (black contours).

optimal region groupings obtained via HCF along with re-
covered shape models are shown in Fig. 1.

4 Model-Guided Region Splitting
As observed in experiments [16], our model-guided re-
gion merging scheme is often able to obtain a satisfactory
segmentation despite clutter, shadows, variation in illumi-
nant, and shape deformation. However, performance of the
method is hindered by its assumption of an over-segmented
image to be used as input to the shape-based region group-
ing subsystem. In general, it is not possible to consistently
over-segment all input images. Invariably, some parts of
images are under-segmented, which means that some of
the initial regions correspond with parts of more than one
object in the scene. An example error in segmentation of a
blood cell micrograph is shown in Fig. 2. In addition, the
HCF optimization procedure sometimes becomes trapped
in a local minimum that yields an incorrect region merging.

To address these problems, a region splitting step must
be added to our system. Perceptually-motivated criteria
will be used to determine where/how to split a region,
based on the local shape properties of the region’s bound-
ing contour. We will also make use of our deformable
shape-model in guiding the selection of splits. In consider-
ing a split, the change in the fitting cost (Eq. 3) after split-
ting provides a measure for the quality of the cut.

4.1 Region Splitting Criteria
In order to detect candidate regions or groups for splitting,
the following test can be utilized:

1. At the beginning of the model-based region grouping
stage, check each region. If that region’s model fitting
cost (Eq. 1) is larger than a threshold, then it is a split-
ting candidate.

2. At the end of merging via HCF, for each group, if its
model fitting cost is larger than the threshold, then it is a
splitting candidate.

The split threshold can be obtained through statistical anal-
ysis for the training examples. Since the number of regions
in the over-segmentation result is large typically, we only
utilize the splitting operation after the model-based HCF

(a) (b)

Figure 3: Detected cut points (a) and selected cut (b) for Fig. 2.
Dotted contours in (a) are the model boundaries, dark square
marks represents the candidate cut points.

merging stage (for computational efficiency). If new re-
gions occur in the model based splitting stage, then the
model-based merging stage is invoked again to refine the
final result. Eq. 3 is used both in splitting and merging for
evaluating the feasibility of split/merge operations, enforc-
ning the Minimum Description Length (MDL) principle.

4.2 Selecting Candidates of Cut Endpoints
If a group of regions is a splitting candidate, then we use
perceptual criteria and model fitting information to select
the splitting boundaries. After we have determined the
overlapping between the fitted model and the underlying
region for splitting, as shown in Fig. 2(b), we can get the
curve segments of the region boundary inside the model
area (the thick gray curve segments shown in Fig. 3(a)).
The search for candidates of cut endpoints will be limited
to these segments.

One criterion of splitting methods is robustness: the
method should be insensitive to small changes of shape due
to differences among the members of a class or to small dif-
ferences in view position. Because curvature computation
is more complex and sensitive to noise, we do not utilize
the minima rule for the region splitting, instead we will
search for cut endpoints in the concave segments on the re-
gion boundary along lines of [26]. Cut endpoints are gen-
erally located in the region boundary’s concave segments,
which are most likely inside the fitted model. Making use
of the difference between the region boundary and model
boundary can make the splitting algorithm more robust and
more efficient since knowledge about the object can be em-
ployed in the splitting. The concave segments detection
method is as follows:

1. Intersect the region boundary with the model boundary.
This yields a collection of curve segments si of the re-
gion boundary that lie with in the model area.

2. For each curve segment si, for si’s starting point to its
end point, check the convexity of each point along the
segment. In other words, for each point, check its small
neighborhood to decide whether this point is on a convex
segment or concave segment. The neighborhood size ln



will influence the accuracy and robustness of the result. 1

3. After smoothing the convexity of each point to eliminate
noise influence, the whole segment si will be decom-
posed into concave and convex sub-segments.

4. For each concave sub-segment from s i, check its length.
If the length is compatible with the specified neighbor-
hood size ln for checking convexity, then select the cen-
ter point of this sub-segment as a candidate cut point.

In the concave segments detection method, there is also
another criterion which can be used in selecting candidate
points[26]: If the length of a concave sub-segment is com-
parable with its adjacent convex sub-segments, then regard
this convexity change as due to the natural shape change of
the object, and not well suited for splitting. Only when the
length of a concave sub-segment is significantly smaller
than those of its adjacent convex sub-segments, is a candi-
date point selected from it. However, in our experiments,
this criterion is too strict; real cut endpoints may be omit-
ted, due to the non-smoothness of the region boundaries.

One added benefit in our approach is that we can make
use of overlap between the deformed model and the under-
lying region for determining if and how to split the region.
This makes the splitting algorithm more robust and effi-
cient since knowledge about the object can be employed in
testing and selecting cuts. It should be noted that our algo-
rithm also considers the boundaries of holes in determining
cut points, if the holes are inside the fitted model.

The cut point candidates obtained will be tested in the
cut selection stage. It is likely that not all the cut point
candidates will be used in the final cut (maybe none at all).
Selection of cuts is described in the next section.

4.3 Strategies for Selecting a Cut
Given a set of candidate cut end points for splitting the re-
gion, there are many possible region cuts possible. In our
model-based splitting method, the quality of a cut can be
determined by calculating the change in global cost Eq. 3
that results from that region cut. Put differently, if the com-
bined cost of the two new regions is less than the cost of
the original region, then this cut can be regarded as feasi-
ble. For example, given region grouping g can be split into
g1 and g2 by a cut, we compare the old cost

(1� )rE(g) + ; (4)

and the new cost

(1� )(r1E(g1) + r2E(g2)) + 2; (5)

where  and r are as defined in Eq. 3, E(g) in Eq. 1. If the
new cost is less than the old cost, then the cut is feasible.

To select a cut based on a set of candidates of cut end-
points, the direct strategy is: test all possible cuts. For

1We choose ln = 6 in our experiments.

all possible cuts, compare the cut quality via Eqs. 4 and 5
and select the one with the least cost. Fig. 3(b) shows a
cut selected based on this strategy. The drawback of ex-
haustive search is the computation required. We therefore
tested two alternative strategies for selecting a cut: modi-
fied short-cut rule[25], and a queuing strategy.

In the modified short-cut rule, the cut of shortest length
is tested first. If this cut is a feasible cut, then stop. Oth-
erwise, delete the candidate point with least significance
from this cut, and repeat to test the shortest cuts given the
remaining candidate points until a feasible cut is found or
there is no cut remaining to test.

In the queuing strategy, sort all possible cuts according
to the cut length and construct a queue. Fetch cuts from
this queue until a feasible cut is obtained. In other words,
first test the minimum cut, then the second minimum cut,
etc., until a feasible cut is found or no cuts remain.

If there is only one candidate point detected in a region
for splitting, one possible solution is to generate a cut from
this candidate point to cross the local symmetry axis of the
region[25]. However, the robust computation of axes is
difficult. Our simple alternative is to fit a line to the corre-
sponding curve segment of the model boundary, and gen-
erate a cut from this candidate point to follow the normal
direction of the fitted line. The motivation for this approxi-
mation is that model boundaries tend to be locally smooth.

4.4 Smooth Cuts from Model Boundaries
There is another benefit from computing the overlap be-
tween the recovered model and the underlying region. If
one object is incorrectly merged with a small part of its ad-
jacent object(as shown in Fig. 4(c) and (d)), the curve seg-
ments of model boundary inside the region are also good
candidates of cuts since the recovered model is more sta-
ble to noise. In Fig. 4(c) and (d), one curve segment of the
model boundary inside one fish region separates the incor-
rect merging part from the fish body. Based on curve seg-
ments of the model boundary inside the region, a smooth
cut can be obtained instead of only straight cuts. There-
fore, the precision of the region boundary can be improved
as well. The resulting segmentation after split/merge step
is shown in Fig. 4(e) and (f).

To reduce the computation complexity, smooth cuts are
only considered if there is no feasible cut obtained through
the strategies in Sec. 4.3 since the smooth cut strategy is
more sensitive to small shape changes.

4.5 Recursive Splitting and Final Merging
Since we do not know how many objects exist in the region
for splitting, we propose a recursive algorithm for splitting
the region: after one feasible cut is found for the region, for
the two new regions obtained via this splitting, recursively
apply the splitting algorithm until no new feasible cut can
be found. Therefore, multiple cuts can be found for one
initial region. The recursion stops when no feasible cut



is found based on the strategies in Sec. 4.3 and Sec. 4.4.
In order to refine the splitting result, we apply the HCF
algorithm again to re-merge regions as needed.

5 Experiments
Experiments were conducted to evaluate the performance
of the previous merge-only approach [16] versus the split-
merge approach described in this paper. In the statisti-
cal analysis, we used a test database of 22 leaf images
(about 200 leaf objects), 20 synthesized fish images (160
fish objects), and 21 cell micrographs (about 700 cell ob-
jects). Examples of these images are shown in Figs. 4– 6.
Deformable template models were trained for each of the
three shape classes using additional images that were not
included in the test database as described in [16]. Between
40 and 70 images were used to train each shape model.

The synthetic images of fish were obtained as follows.
Random fish shapes were created by drawing samples from
fish template’s deformation distribution (estimated during
training). The resulting region was then partitioned into
sub-regions via triangulation and assigned random colors
drawn from a normal distribution. In addition, we added
random noise to the synthesized images. Example syn-
thetic fish images are shown in Fig. 4. Fish were placed at
random orientations and positions in each image, subject
to the constraint that they overlapped or touched at least
one other fish.

Using the three databases, we conducted experiments
to measure the success rate of object detection for the
previous method (that used merge only) versus the new
split/merge approach. The results of these experiments are
shown in Table 1. Object detection rates were measured
for all three cut selection strategies described in Sec. 4.3:
short-cut rule, exhaustively test all cuts, and the queuing
strategy. It was noted that there was a significant improve-
ment in object detection rates when any of the splitting
strategies was employed in concert with merging. How-
ever, there was no significant difference in object detection
rates among the three different cut selection strategies. It
was noted that the exhaustive, test all cuts strategy may not
yield the globally optimal partioning always. This is ev-
idenced by performance shown for the cell images in Ta-
ble 1. At each step in this strategy, the locally optimal cut
is selected from multiple cuts.

In the same experiments, it was also noted that segmen-
tation quality was improved when split and merge were
employed. As a quantitative measure for comparing the
quality of segmentation, the model fitting cost was calcu-
lated for each region group using Eq.1. Table 2 gives a
comparison of the mean fitting cost for deformed shape
models recovered in the three different sets of test imagery.
Smaller mean fitting costs generally indicate better fitting
models, and higher-quality segmentation. Example results
for merging versus split/merge are shown in Figs. 4–6.

Leaves Cells Fish
No splitting 85.24% 85.79% 76.25%
Short-cut rule 92.86% 93.90% 85.00%
Test all cuts 96.19% 93.62% 86.25%
Queuing strategy 91.43% 93.90% 85.00%

Table 1: Comparison of object detection rates in three test sets.

Leaves Cells Fish
No splitting 1.1338 1.1863 1.0626
Short-cut rule 1.1188 1.0531 1.0528
Test all cuts 1.1117 1.0522 1.0550
Queuing strategy 1.1148 1.0522 1.0555

Table 2: Comparison of the mean fitting cost for deformed shape
models recovered in segmentation.

Given that there was not significant difference in per-
formance between the three splitting strategies, a decid-
ing factor in selecting a strategy would be CPU time re-
quired. In the experiments it was noted that on average
the short-cut strategy was fastest; on average, obtaining the
segmentation via short-cut strategy required only 59:6% of
the CPU time required for exhaustive search. On average,
the queuing strategy required 79:1% of the CPU time re-
quired for exhaustive search.

One limit of the system is that it cannot cope with large
occlusions. An example is shown in the second row of
Fig. 6, where two adjacent cells are not split due to a high
degree of overlap. Our current algorithm does not ex-
plicitly model occlusion. It processes occluded objects as
shapes with much more deformation. Incorporation of an
explicit occlusion model is needed to deal with large over-
lapping of shapes.

6 Conclusion

An improved method for deformable shape-based im-
age segmentation was described. The method employs a
perceptually-motivated splitting strategy in concert with a
deformable template model that embodies prior knowledge
for a particular shape class. The method combines model
fitting information in selecting cut points and also in the
evaluation of the possible cuts in the region splitting. The
recursive splitting structure in the algorithm gets rid of the
requirement to know the number of cuts. This is an im-
provement over many previous shape splitting methods and
multi-scale techniques[24, 15, 1, 21]. The experimental
results show that after the splitting, the success rate of ob-
ject detection and the accuracy of object boundaries are
improved. Some different strategies are tested in our ex-
periments for the feasible cut selection. When considering
CPU time employed, the modified short-cut rule is faster
in searching feasible cuts, and the splitting quality is com-
parable to other strategies.
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Figure 4: Region merging and split/merge experiment with a
synthesized fish image. (a) Original image, (b) initial over-
segmentation result, (c) merging result based HCF algorithm, (d)
overlapping between the recovered models (thick black contours)
and the regions (grey areas), (e) result of merging again after split-
ting, (f) new recovered models.

References
[1] A. Belyaev, et al. Polygonal curve evolutions for planar

shape modeling and analysis. Int. J. of Shape Modeling,
5(2):195–217, 1999.

[2] J.R. Beveridge, et al. Segmenting images using localized
histograms and region merging. IJCV, 2(3):311–352, 1989.

[3] I. Biederman. Recognition by components: A theory of hu-
man image understanding. Psych. Review, 94(2):115–147,
1987.

[4] T.O. Binford. Visual perception by computer. IEEE Conf.
on Sys. and Control, 1971.

[5] P. B. Chou and C. M. Brown. The theory and practice of
Bayesian image labeling. IJCV, 4(3):185–210, 1990.

[6] D. Comaniciu and P. Meer. Robust analysis of feature
spaces: Color image segmentation. CVPR, 750–755, 1997.

[7] T.F. Cootes, A. Hill, C.J. Taylor, and J. Haslam. Use of ac-
tive shape models for locating structure in medical images.
IVC, 12(6):355–365, 1994.

[8] U. Grenander, Y. Chow, and D. M. Keenan. Hands: A pat-
tern theoretic study of biological shapes. Springer-Verlag,
1991.

[9] D. D. Hoffman and M. Singh. Salience of visual parts. Cog-
nition, 63(1):29–78, 1997.

[10] D.D. Hoffman and W.A. Richards. Parts of recognition.
Cognition, 18:65–96, 1985.

[11] S.L. Horowitz and T. Pavlidis. A graph-theoretic approach
to picture processing. CGIP, 7(2):282–291, 1978.

[12] A.K. Jain, Y. Zhong, and S. Lakshmanan. Object matching
using deformable templates. PAMI, 18(3):267–278, 1996.

[13] M. Kass, A.P. Witkin, and D. Terzopoulos. Snakes: Active
contour models. IJCV, 1(4):321–331, 1988.

[14] B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker. Shapes,
shocks, and deformations i: The components of 2-
dimensional shape and the reaction-diffusion space. IJCV,
15(3):189–224, 1995.

[15] L. J. Latecki and R. Lakamper. Convexity rule for shape
decomposition based on discrete contour evolution. CVIU,
73(3):441–454, 1999.

[16] L. Liu and S. Sclaroff. Deformable shape detection and
description via model-based region grouping. CVPR, II:21–
27, 1999.

[17] K. Mardia and K. de Souza. Deformable template recogni-
tion of multiple occluded objects. PAMI, 19(9):1035–1042,
1997.

[18] D. Marr. Analysis of occluding contour. Proc. Royal Soc.
B, 197:441–475, 1977.

[19] A. Pentland. Automatic extraction of deformable part mod-
els. IJCV, 4(2):107–126, 1990.

[20] W. Richards, B. Dawson, and D. Whittington. Encoding
contour shape by curvature extrema. JOSA-A, 3(9):1483–
1491, 1986.

[21] P. L. Rosin. Shape partitioning by convexity. IEEE Trans.
on Sys. Man and Cyb. Part A30(2):202–210, 2000.

[22] J.C. Russ. The Image Proc. Handbook. CRC Press, 1992.

[23] S. Sclaroff and L. Liu. Deformable shape detection and
description via model-based region grouping. PAMI, 23(5),
2001.

[24] M. Singh and B. Landau. Parts of visual shape as primitives
for categorization. Behavioral and Brain Sci., 21(1):36–37,
1998.

[25] M. Singh, G. D. Seyranian, and D. D. Hoffman. Parsing sil-
houettes: The short-cut rule. Perception and Psychophysics,
61(4):636–660, 1999.

[26] L. M. Vaina and S. D. Zlateva. The largest convex patches
- a boundary-based method for obtaining object parts. Bio-
logical Cybernetics, 62(3):225–236, 1990.

[27] A. Yuille, D.S. Cohen, and P. Hallinan. Feature extraction
from faces using deformable templates. IJCV, 8(2):99–111,
1992.

[28] S.C. Zhu and A. Yuille. Region competition: Unifying
snakes, region growing, and Bayes/MDL for multiband im-
age segmentation. PAMI, 18(9):884–900, 1996.
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Figure 5: Two examples from the leaf image database: (a) original image, (b) over-segmentation, (c) merging result after HCF algorithm,
showing overlap between the recovered models (thick black contours) and the regions (grey areas),(d) model-based splitting result.

(a) (b) (c) (d)

Figure 6: Example image from blood cell micrograph database: (a) original image, (b) over-segmentation result, (c) merging result
based HCF algorithm showing overlap between the recovered models (thick black contours) and the regions (grey areas), (d) model-
based splitting result.


